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My professional research goals center around the investigation and solution of mathematical and
computational problems of scientific and engineering relevance. During the last few years, I have
worked on a variety of highly applied and very challenging problems in electromagnetics, hydrody-
namics, and combinations of both; certainly, computational science lies at the core of my research
interests.

The main goal of computational electromagnetics, for example, is the design and implementation
of numerical methods that can be used to efficiently simulate electromagnetic wave interactions with
complex material structures. This field has shown an impressive growth in recent years, as improved
numerical algorithms enable accurate simulation of the ever more complex phenomena arising in
an ever growing number of applications. The numerical methods used in this area draw from the
classical approaches, such as the method of moments and finite-element based algorithms into the
efficient high-order/accelerated algorithms that have arisen over the last two decades. Applications
are found in communications (transmission through optical fiber or wireless communication), remote
sensing and surveillance (radar and sonar systems), geophysical prospecting, materials science, and
biomedical imaging (optical coherence tomography), to name but a few.

Significant challenges arise in the design of reliable numerical algorithms for engineering and in-
dustrial applications such as those mentioned above. These challenges are largely due to the necessity
of numerical methods to resolve wave oscillations and interactions of these with geometrically and/or
compositionally complex structures, which lead to very high (often prohibitive) computational costs
for many problems of interest. Often times the approaches outlined below result in computation times
which are several orders of magnitude smaller than those produced by the classic solution methods
such as the method of moments. The focus of my work has been and will continue to be the develop-
ment and implementation of efficient, fast and accurate numerical algorithms to enable treatment of
challenging engineering and scientific applications.

1 Wire Antenna Problems

1.1 Straight Wires

The problem of evaluating the current distribution that is induced on a thin straight-wire antenna by
a time-harmonic electromagnetic field was first described by Pocklington [1] more than a century ago;
its computation remains an important and difficult engineering problem to this day. The current J
induced on a wire occupying the interval [−1, 1] by an incident electric field with axial component e
and wave number k can be obtained as a solution of the Pocklington integro-differential equation(

∂2

∂z2
+ k2

)∫ 1

−1
G(z − t) J(t) dt = −4πike(z), (1)

subject to the end-point conditions J(−1) = J(1) = 0. An alternative (and, in exact arithmetic,
equivalent) formulation for this problem is given by the Hallén integral equation, which results from
(1) by inverting the Helmholtz operator.



The solution of both the Pocklington and Hallén problems has received wide attention, owing to
the importance and age of the problem. We believe that we have made significant contributions to the
literature in [2]. One of the main results in that paper is a regularity proof which, in the particular
case of a time-harmonic incident plane wave implies that, for a straight wire occupying the interval
[−1, 1], the current is given by J(z) = I(z)/

√
1− z2 where I(z) is an infinitely differentiable function.

(The strongest previous result in these regards has I as a twice continuously differentiable function
at most.) The second focus of this work is numerics: we present three super-algebraically convergent
algorithms for the solution of wire problems, two of which are based on Hallén’s integral equation,
while the third one is based on the Pocklington integro-differential equation. The kernel G(z) that
appears in these formulations, which is itself given by an integral, has a logarithmic singularity at
z = 0. Both our regularity proof and our strategy to produce algorithms of high order of accuracy
for this problem are based on two main elements. On one hand we 1) Introduce a new decomposition
of the kernel of the form G(z) = F1(z) ln|z|+ F2(z), where F1(z) and F2(z) are analytic functions in
the domain |z| < ∞. On the other hand, we 2) Account to high order for the end-point square root
singularities in the current.

Having accounted to all orders for all integrand singularities and near-singularities, and in view of
our regularity result, we find that the Hallén- and Pocklington-based algorithms we propose converge
super-algebraically: faster than O(N−m) and O(M−m) for any positive integer m, where N and M are
the numbers of unknowns and and the number of integration points required for construction of the
discretized operator, respectively. (Interestingly, in contrast with reports and comments concerning
previous methods, we found that our Hallén-based and Pocklington-based algorithms are equally
efficient in many cases, and that there are important instances in which the Hallén-based methods are
preferable while, in others the Pocklington-based approach is more favorable.) In previous studies, at
most the leading order contribution to the logarithmic singular term was extracted from the kernel
and treated analytically, the higher-order singular derivatives were left untreated, and the resulting
integration methods for the kernel exhibit O(M−3) convergence at best. In many cases, to achieve a
given accuracy, the numbers N of unknowns required by our codes are up to a factor of four times
smaller than those required by the best solvers available previously [3]; the required number M of
integration points, in turn, can be several orders of magnitude smaller than those required in previous
methods.

Subsequent to our development of wire-scattering solver mentioned above we pursued a project,
in collaboration with O. Bruno and R. Paffenroth (Caltech) and V. Cable and N. Bleyzunk (JPL),
to interface this solver with Caltech’s fast and accurate integral equation solvers for general electro-
magnetic problems, including scattering from surfaces containing edges and corners. The goal of this
collaboration was to create a fully validated EM simulation infrastructure for use by the Spacecraft
Antennas Research Group of the NASA Jet Propulsion Laboratory (JPL). The combined wire and
edge solvers have been used to produce the far-field of a experimental configuration consisting of
cylinder with an attached cylindrical monopole antenna, showing excellent agreement with experi-
mental data obtained by our JPL collaborators. These and other results are presented in [4]. The
tools resulting from this effort will be used to plan, design and optimize UHF proximity links between
orbiters and surface landers, and between different surface assets for all Mars missions.

1.2 High-Order Treatment of Driving Sources

A related, but more difficult problem consists of the case when the excitation source (such as a coaxial
line) is attached to the wire itself, giving rise to the so-called transmit problem. The most common
current source model is the so-called delta-gap generator, in which a finite voltage driving the current
is maintained across an infinitesimally thin gap at the source location. Prior to our work, the precise



nature of the singularity in the current distribution induced by a source was known only at leading
order, and hence the error of related numerical methods were limited to second order in the number
of discretization (mesh) points. High-order methods rely on precise knowledge of all singular terms
in a local series expansion of the current about the source. We have shown that the singularity in
the current distribution due to the source may be deduced to all orders by means of an expansion
based on a related, but simpler integral equation. The resulting numerical implementations have
demonstrated high-order convergence [5].

To generate high-order algorithms for the driven-wire case we extend the scattering-problem algo-
rithm described in [2]. If the wire is taken to lie on the interval z ∈ [−1, 1] with the delta gap located
at z = 0, for example, then the current density J = J(z) can be found as the solution of the Hallén
equation ∫ 1

−1
G(z − t) J(t) dt =

2πiV
ζ0

(sin k|z|+ α cos kz) , (2)

subject to the end-point conditions J(−1) = J(1) = 0. Here ζ0 = 120π Ω is the free-space impedance,
k is the free-space wave number, and α is a constant chosen to ensure the vanishing of the current at
the wire end points. It is known that the solution to the Hallén equation (2) in this case possesses
a logarithmic singularity at leading order [6], which gives rise to low order convergence and, indeed,
large numerical errors in all the methods we have found in the literature. Notably, for example, in
the recent work on driven wires [7] we read:

“Note that the interpretation of convergence for wire antennas excited with a delta-gap
voltage source should be based on the current distribution excluding the current near
the source, where the imaginary part of the current at the delta-gap source eventually
diverges as the sub-domain size decreases... A convergence study was done by illuminating
a wire loop with a normally incident plane wave at 1 GHz. Using a plane wave excitation
eliminates the slow convergence associated with the infinite feed capacitance of a delta-gap
source.”

In order to address the important problem of the regularity of the current density in the transmit
case and to produce fast, high-order convergence in spite of this difficulty our ongoing work has
obtained the following form for the solution of the Hallén equation:

J(z) =
2πiV
ζ0

[
I0(z) ln

(
1 +
√

1− z2

1−
√

1− z2

)
+

I1(z)√
1− z2

]
, (3)

where I0 is an explicitly computable function and I1 is a smooth function to be evaluated numerically.
This approach thus effectively regularizes the singularity problem and paves the way for high-order
solution of the driven antenna problem. In detail, using the power series expansion

I0(z) = −ka
π

M∑
n=0

α2n

( z
2a

)2n
, (4)

our method produces the coefficients α2n as the solution of the linear system

n∑
m=0

b2n−2mα2m

n−m∑
`=0

(
2n− 2m

2`

)
1

2`+ 2m+ 1
=

(−1)n+1(2ka)2n+1

2πka2(2n+ 1)!
(5)

for n = 0, 1, . . . ,M . Note that b2n are the Taylor series coefficients of the kernel function F1 (see
section 1.1); an expression for b2n is easily derived from expressions given in [2]. With the coefficients



so chosen, the integral operator acting on the logarithmic term in (3) precisely cancels increasing
powers of k|z| arising from a Taylor series expansion of sin k|z| in the source function of equation
(2). This method allows for the extraction of arbitrarily many orders of singularity from the source
function h. Theoretical results in [2] imply then the function I1 becomes increasingly smooth in the
neighborhood of the driving point, and thus a Chebyshev discretization for this function becomes
increasingly rapidly convergent. For reference the first few coefficients of I0 in equation (4) are

α0 = 1, α2 = 1 + 2(ka)2, α4 = −19
12

+ 2(ka)2 + 2(ka)4. (6)

Our methods as outlined above fully resolve the current function I1 everywhere on the interval z ∈
[−1, 1], and in particular in a neighborhood of the origin.

Figure 1: The 162-element array consists of two shifted coplanar 9x9 arrays. Each wire is 61mm in
length and of diameter 0.0078mm. The red array is shifter from the blue array by 1.53mm in the
vertical direction and 30.5mm to the right. The blue dot shows the position of the voltage driving
source, located at the center of the central blue wire. Note that the array is not precisely symmetric
with respect to the origin.

1.3 Large Driven Arrays of Wires

We have combined the computationally efficient approaches for the treatment of straight wires and
on-wire sources to produce very fast solvers for driven arrays consisting of arbitrarily large numbers
of elements [8]. Such an extension of our methods has posed serious challenges: the possibility exists
for two conducting elements to be in very close proximity to one another, and thus strongly interact,
and potentially requiring significant refinement of computational grids. In what follows we outline
our numerical results for such a large wire array where elements are placed in close proximity to one
another.

The array geometry is depicted in Figure 1. The array is driven by a current source located near
the geometric center (and indicated as a blue dot at the origin on the figure). A selection of far-field
results corresponding to an excitation frequency of 2GHz are depicted in Figure 2.
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Figure 2: Far field analysis for 162-element antenna excited at 2GHz. (a) Total (normalized) far field
intensity in the yz-plane; (b) Three dimensional spherical plot of total field intensity at 2GHz.

1.4 Long Curved Wires and Backscattering Problems

Another important contribution we have made to the study of thin wire antennas is a numerical
method to treat the scattering problem from fully three-dimensional long curvilinear wires (in contrast
to the straight wire case discussed above). In that work [9] we have presented a method which fully
resolves the singularity of the three-dimensional integral equations, including effects generated by the
local curvature of the antenna. Previous methods utilized a tangent plane approximation, locally
replacing the curved wire by a straight wire in the neighborhood of the kernels singularity, and thus
were limited to second order in the mesh discretization. Our numerical implementations for long
curvilinear antennas have demonstrated exponential convergence in the number of mesh points.

For curved wires we utilize the full Pocklington-type equation, and associated kernel, since the
Hallén type equation for the curved-wire case is unduly complex; the Pocklington equation for a wire
parameterized by s ∈ [−1, 1] with tangent vector t̂(s) reads

∂

∂s

∫ 1

−1

∂

∂s′
J(s′)G(s, s′) ds′ + k2

∫ 1

−1
t̂(s) · t̂(s′)J(s′)G(s, s′) ds′ = e(s), (7)

where the source term e(s) is proportional to the tangential incident field. The curved-wire kernel is
not translation-invariant, and, thus, for fast performance, it is imperative to obtain a highly efficient
method for evaluation of this quantity. We have noted that the curved wire kernel may be written in
a similar for to the straight-wire kernel in [2]:

G(s, s′) =
1

2π
√
aw

∫ π

0

e2ik
√
aw
√
ρ2+sin2 ψ√

ρ2 + sin2 ψ
dψ. (8)

The kernel (8) which depends on non-dimensional quantities w = w(s, s′) and ρ = ρ(s, s′), can be
obtained extremely rapidly by means of the series expansion

G(s, s′) =
ik√
π

∞∑
m=0

(k2aw)2mΓ(m+ 1/2)
m!(2m)!

h
(1)
2m(kv)

(kv)2m
(9)
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Figure 3: Backscattered HH intensity for long helix lying on the x-axis. Wire parameters are t = 50
turns, ` = 60.96cm and r = 6.35cm; the diameter of the wire is 0.255mm. Interesting resonances are
present at regular intervals in the elevation angle.

(where v = v(w, ρ)) for s sufficiently far from s′.

The high-order curved wire algorithm we have produced generates solutions of an accuracy similar
to that provided by the straight wire solver, in comparable, very fast computing times. As an inter-
esting example we consider a left-handed helical wire lying on the x-axis: the Cartesian components
of the helical filament are given by x = ps, y = r cos[tπ(s+ 1)], z = −r sin[tπ(s+ 1)], where p is the
pitch, t is the number of turns, and r is the loop radius. We may further relate the pitch p to the turn
spacing `: p = t`/2. The helical wire is illuminated by a polarized incident plane wave with direction
vector r = (cos θ cosφ, sin θ cosφ,− sinφ). The currents excited by the incident field are computed
and far field results, which are often the desired result in applications, are produced. In Figure 3 we
show the backscattered electric field intensity in horizontal polarization produced by a horizontally
polarized incident field (the well-known HH case) with azimuthal angle θ = 0. We note the interesting
resonances which appear in the backscattered direction as the elevation angle φ varies from 0 to π.

2 Numerical Methods for Optical Gratings

The phenomenon of scattering of waves by periodic surfaces is of fundamental importance in optics and
numerous other applications in the physical sciences. For example, diffraction gratings are used in solar
energy research, remote sensing applications, and quality control processes in the microelectronics
industry. A vast literature exists for scattering from periodic surfaces, encompassing a wide variety
of methods. In what follows we present methods based on the theory of integral equations.

Our high-order algorithms for grating diffraction problems treat the scattering of a time-harmonic
incident plane wave of wavelength λ = 2π/k,

uinc(r) = exp[i (αx− βz)] with α = k cos θ and β = k sin θ, (10)

by a piecewise smooth P -periodic parametric perfectly conducting surface ∂S. The total field u(r),
which equals the sum u(r) = uinc(r) + us(r) of the incident field uinc and the (radiating) scattered
field us, satisfies the scalar Helmholtz equation

∆u+ k2u = 0 for r ∈ S, (11)



a/P N M N∗ error (TE) |1− E| (TE) error (TM) |1− E| (TM) texe (min)
4 550 211 700 7.35× 10−13 5.73× 10−12 7.58× 10−13 1.09× 10−12 10
8 1050 212 1200 6.14× 10−12 1.48× 10−11 7.52× 10−11 5.19× 10−11 64
12 1600 213 1700 1.49× 10−11 4.00× 10−12 3.75× 10−11 8.28× 10−11 236
16 2100 213 2200 3.59× 10−11 8.72× 10−11 5.74× 10−11 2.83× 10−11 392
20 2600 213 2700 9.80× 10−11 3.51× 10−11 2.05× 10−10 1.55× 10−10 570

Table 1: Code performance for various surface heights a with parameters and resulting accuracy and
energy balance for both cases of TE and TM scattering from surface profile f(x) = a cos(2πx/P ) with
λ = 0.05P and θ = 7π/18.

where S is the region of the (x, z)-plane which lies above ∂S. The TE and TM boundary-value
problems for the Helmholtz equation result as the respective boundary conditions

u = 0 (TE) and
∂u

∂n
= 0 (TM) (12)

are imposed on the boundary ∂S. The solutions of equation (11) for both TE and TM polarizations
can be expressed in terms of double-layer potentials of the form

us(r) =
∫
∂S

∂Φ(r, r′)
∂n(r′)

µ(r′)ds(r′), r ∈ S, (13)

where µ is an (unknown) surface density function and where Φ(r, r′) = iH
(1)
0 (ik|r− r′|)/4 is the two-

dimensional radiating free-space Green’s function [13]. The surface densities µ+ and µ− associated
with TE and TM polarizations are solutions of the integral equations

−uinc(r) = ±1
2
µ±(r) +

∫
∂S

∂Φ(r, r′)
∂n(r′)

µ±
(
r′
)
ds(r′), r ∈ ∂S, (14)

where the + and − signs correspond to the TE and TM polarization cases, respectively.

2.1 Fast and Accurate Solution for Classical Gratings

In our contribution [10] we present an algorithm for evaluation of the integral equation (14) for scat-
tering by one-dimensional, perfectly conducting smooth periodic surfaces z = f(x) for both TE and
TM polarizations. Our high-order algorithm for these problems is based on concurrent use of Floquet
and Chebyshev expansions. For an incident field with C∞ smoothness, our algorithms converge faster
thanO(N−m) andO(M−m) for all positive integers m, where N denotes the number of surface-density
unknowns, and M denotes the number of weights used for integration of the kernel functions. For
grating-diffraction problems in the resonance regime (heights and periods up to a few wavelengths)
the proposed algorithm produces solutions with full double precision accuracy in computing times of
the order of a few seconds—on present-day single processor PC-type desktops. The algorithm can
also produce, in reasonable computing times, highly accurate solutions for very challenging grating
diffraction problems, such as a) A problem of diffraction by a grating for which the peak-to-trough
distance equals forty times its period which, in turn, equals twenty times the wavelength; and b) A
high-frequency problem with very small incidence, up to and including 0.01 degrees from glancing.
The qualities of the algorithm derive, in part, from use of certain integration weights that are com-
puted accurately by means of an asymptotic expansion as the number of integration points tends to
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Figure 4: Several periods of the singular grating profiles s(t): the lamellar grating with P = A = 1 in
(a); a test surface containing partial cavities with P = 1 and A = 1/5 in (b).

infinity. The algorithms presented in [10] are fully rigorous and convergent and, in particular, they
take into account all scattering effects including shadowing and multiple reflections.

To demonstrate the robustness of that solver, we consider several cases that, to the best of our
knowledge, could not previously be successfully tackled on desktop PCs. In Table 1 we consider
problems with incidence angle fixed at a moderate value and with a moderate value of the frequency
(supporting 40 propagating modes); the amplitude of the profile, in turn, is allowed to vary between
4 and 20 (i.e. the peak-to-trough height varies between 8 and 40 times the period). In each case near
machine precision accuracies are produced in both the absolute error, and the classical energy balance
estimate |1 − E|. The case a/P = 4 was previously considered in [15]; the most accurate method
presented in that reference requires times of the order of 662 min. on a Sparc 20 workstation to
achieve 4-digit accuracies for this problem. Our method, in contrast, achieves nearly double precision
accuracies in computing times on the order of 10 min in this case.

2.2 Singular Vector-Parametric Gratings

In a companion work to [10] outlined above, we extend the methodology to vector-parametric, possibly
non-smooth periodic scattering surfaces defined by a piecewise smooth vector parametrization of the
form s(t) = (xs(t), zs(t)). Like its single-valued smooth-surface counterpart, the solver is based on
use of Floquet expansions and Chebyshev-based integration: the novel introduction of rapidly conver-
gent Floquet expansions for currents on (possibly) non-smooth, multiple-valued scattering surfaces
enables extension of the previous high-order methodology to a significantly broader class of impor-
tant diffraction problems. In particular, our new method yields near machine precision accuracies
in computing times of the order of a few seconds for scattering problems in the resonance regime,



N M With Regularization Without Regularization
error |1− E| texe(s) error |1− E| texe(s)

150 210 2.15× 10−3 1.01× 10−3 104.2 2.80× 10−3 9.39× 10−3 103.7
175 210 5.31× 10−6 7.01× 10−6 124.6 4.11× 10−4 1.54× 10−4 123.9
200 210 6.63× 10−9 2.23× 10−9 146.1 5.46× 10−6 5.75× 10−6 145.6
225 210 1.59× 10−9 6.44× 10−11 167.6 4.22× 10−6 8.90× 10−6 167.1
250 210 4.19× 10−11 1.74× 10−11 189.5 6.98× 10−7 7.94× 10−7 188.9

Table 2: Convergence results for singular grating profile in Figure 4(b) with A/P = 1/5. Together
with integration points M , the error, energy balance and execution time are shown for the case of
TE polarization with λ = 0.05P (40 propagating modes) and θ = π/4. Sets of results are presented
for this problem when regularization is applied and otherwise. Clearly regularization gives rise to
significantly faster and more stable convergence with a negligible cost.

and it can also produce, in reasonable computing times, solutions for highly challenging TE and TM
scattering problems—defined by very deep multi-valued scattering surfaces and high frequencies of
radiation—including cases in which non-smooth bounding surfaces enclose open cavities.

In the presence of geometric singularities in the surface profile, we actually solve a modified form
of the integral equation (14). Indeed, in this case the integrands cannot be bounded by a function
of the form T (t − τ), where T = T (r) is an integrable function which is itself bounded for values of
r away from r = 0. If left untreated, such singularities give rise to certain reductions in accuracy, as
demonstrated below. Such a “bounded-integrability” property and an associated increased degree of
accuracy can be restored through treatment of the leading order singularity in the integral equation’s
kernel at corner points. In order to restore bounded-integrability in the case in which the domain
contains corners we note that the leading order singularity of the kernel of equation (14) coincides
with the leading order singularity in the k = 0 (Laplace) Green’s function. Indeed a vanishing
term is formed by integrating the Laplace Green’s function with the surface density at the source
point. Subtracting out of the null terms from the original integral equation (14) results in a bounded-
integrable integrand, and hence suitable for high-order numerical approximation by means of graded
meshes such as those presented in [13] and references therein.

In order to demonstrate the advantages arising from use of the regularization discussed above, we
compare the performance of our solver when applied to the regularized and non-regularized integral
equations. To add substance to the example the comparison is made for a rather challenging problem,
involving the singular parametric “open cavity” profile depicted in Figure 4(b) —and the wavelength
λ = 0.05P (giving rise to 40 propagating modes). In Table 2 convergence results are shown for the
case of TE polarization; similar results are obtained in the TM case. The results presented in Table 2
show that inclusion of the regularization term requires a negligible amount of additional computational
time over that needed in the non-regularized implementation, has a significant effect in the solution
accuracies.

We have also used our singular profile solvers to demonstrate interesting physical behavior in an
otherwise well-known grating geometry – the lamellar diffraction grating depicted in Figure 4(a) [12].
The well-known Wood-Rayleigh anomalies which may strongly influence scattering, particularly in
the case of TM (vertical) polarization, occur at fixed wavelengths determined by the period of the
surface and the direction and wavelength of the incident radiation. We demonstrate the presence of
other anomalies which do not occur at the Wood-Rayleigh wavelengths and may play a dominant role
in the scattering process. We show that the wavelengths at which these poorly-understood anomalies
occur are determined by the geometrical features of the surface.



2.3 Three Dimensional Gratings and Layered Dielectric Gratings

I currently have a graduate student in Astronomy and Physics at York University working on efficient
methods for acoustic scattering from three-dimensional plane periodic surfaces (funded by the Natural
Sciences and Engineering Research Council of Canada). This is related to a project with with P.C.
Gibson (York) and M. Lamoureux (Calgary) on the Pseudo-differential Operator Theory and Seismic
Imaging (POTSI) project.

I have a working extension of the two dimensional codes discussed in this section applicable to
layered dielectric media [14].

3 Enhanced Radar Backscatter From the Ocean Surface

Field and laboratory measurements of electromagnetic scattering from water waves are usually taken
with a radar system in which there are separate facilities (antennas) to transmit and receive electro-
magnetic signals. While the transmitted energy is scattered in a number of directions by the water
surface, the radar only receives the signals which are scattered in the direction in which the signal
originated. Thus, studies of scattering from the ocean surface amount to analyzing the so-called
backscattered signals, and deducing local surface features from these signals.

At low grazing angles (LGA), high frequency radar returns from the ocean surface exhibit qual-
itative features which stand in striking contrast to the returns corresponding to high grazing angle
backscatter. Radar observations in the LGA regime indicate that the backscattered intensity in a
resolution cell can increase dramatically in a time of the order of 0.1 seconds. While this behavior
may be seen in both HH (horizontal transmitted, horizontal received) and VV (vertical transmitted,
vertical received) polarizations, observations indicate that it is more intermittent and impulsive in
HH. These sea-spikes, as they are colloquially known, are typically characterized by a ratio of the
HH to VV polarization amplitude return which exceeds unity. A detailed understanding of this phe-
nomenon has important consequences in the context of detection algorithms for surface targets; a sea
spike is often associated with a false positive identification. Improved (remote) measurements of local
wind conditions and sea states could also result.

While it had long been assumed that sea-spike events were strictly related to breaking waves, the
field experiments of Lewis and Olin [20] were some of the first to suggest otherwise. From various
shore sites, they measured X-band (6 - 12 GHz) radar returns from breaking and near-breaking waves,
with simultaneous video recording of the visual features of the illuminated portions of the surface.
Indeed, their data confirmed that very high amplitude sea spikes are associated with the development
and decay of the whitecaps on waves. However, their data also clearly showed similarly structured
backscatter in the absence of breaking waves, with video recordings indicating locally smooth surface
profiles. A number of experimental studies followed with emphasis on the development of steep waves,
early in the breaking process, and its effect on radar backscatter.

The primary aim of my doctoral thesis was to investigate the physical processes related to the
stability of steep gravity waves, and their effect on the the scattering of electromagnetic waves. It
has been known for some time that periodic water waves are subject to a variety of shape-altering
instabilities. It is generally believed that a class of these instabilities, which are relevant to steep
waves, are responsible for spilling breakers (See Section 4 below). Empirical and theoretical research
on these instabilities has suggested that the dominant mechanism in nonlinear interactions in the
wave field results in three-dimensional periodic structures.

An extended boundary condition method, commonly used in optical studies, is formulated to



compute the scattering from of an electromagnetic plane wave of arbitrary polarization incident upon
an arbitrary doubly periodic surface. This particular generalization of the method, which we provide
for the first time, allows for the exact calculation of the fields corresponding to a linear, isotropic
conducting dielectric scatterer. Results from commonly-used test cases were shown to compare very
favorably with those from other methods presented in the literature. The full water wave equations
are solved numerically, and highly accurate solutions corresponding to three-dimensional steep wave
instabilities are obtained. The scattered electromagnetic fields resulting from these profiles are then
computed using the extended boundary condition method. The computational requirements of the
method are large, necessitating the parallel implementation of routines on a Sharcnet-Canada 144
processor computing cluster. Results for a number of incidence angles are examined for surface
wave configurations in the process of undergoing these instabilities. It is found that, under some
circumstances, returns may drop several orders of magnitude as a result of small variations in the
angle on incident radiation. Furthermore, it is shown that these anomalous returns are not the result
of the well-known Rayleigh anomaly, which corresponds to the passing off of a spectral order. Returns
with HH to VV polarization ratios greater than unity, which are characteristic of sea-spike events,
have been observed.

Work toward my doctoral degree was carried out both at the University of Western Ontario,
and in the Aerospace Radar and Navigation Section of Defence Research Establishment Ottawa
(DREO), where I was a visiting student in the academic year 1999-2000. A proper understanding
of the dynamical aspects of sea-spikes is of great interest in coastal surveillance applications. The
scattering algorithms used in my Ph.D. studies should show significant improvements in efficiency
when redesigned in the spirit of the fast high-order solvers I have been pursuing recently—a project
we intend to pursue in the near future. While such an approach would still require large computing
resources,I believe a detailed understanding of enhanced radar backscatter will emerge from this effort.
High resolution empirical data collected by DREO, to which we have been given access, will be used
to confirm our numerical studies.

4 Hydrodynamic Stability Problems

4.1 Stability of deep-water gravity waves

Observations of water waves in nature indicate that they usually do not propagate as a single
monochromatic or quasi-monochromatic wave train. Instead, especially on the open ocean or when
shoaling on beaches, they may assume much less regular patterns. In general, the motion of water
waves is subject to a variety of physical processes, including the intrinsic instabilities in their motion,
surface tension effects, and dissipative processes such as shearing by a wind input, or wave breaking.
All of the aforementioned processes may contribute to some degree or another to determine the overall
wave profile and its time evolution.

Wave breaking is a complicated nonlinear phenomenon which exhibits a wide range of physical
behavior. Wave breaking represents one of the most long-standing problems of water wave theory;
the dynamics of these processes remain poorly understood. As a propagating wave begins to reach
its maximum energy state, breaking first appears as foam and bubbles on the crests of the steepest
waves. In this stage, known as a spilling breaker, the crest is symmetrical, or nearly so, and the
process is usually accompanied by a small amount of dissipation. This stage of wave breaking is
of great interest in the study of radar signal enhancements (see Section 3.) It is known that steep
waves are subject to rapidly growing instabilities, which in turn lead to breaking. McLean [21] has
shown that the so-called Class-II instabilities, which are dominant for steep waves, result in three-



Figure 5: Stokes wave train with height-to-wavelength ratio 0.127 undergoing Class II instability.
Local surface features which develop on the crests of the waves are thought to lead to spilling breakers.

dimensional crescent-shaped patterns co-propagating with the unperturbed wave. It appears that the
crescent-shaped Class-II instability may locally increase the wave slope at the crest of steep waves
beyond the maximum value, resulting in the spilling breakers. To fully understand the effects of
these instabilities on the scattering of electromagnetic waves, we have implemented a variation of the
numerical approach of McLean [21]. We obtain highly accurate solutions for both, the base Stokes
wave, and the evolution of the superimposed disturbance (See Figure 5, for example).

4.2 Modal interactions in a Bickley jet

For the plane wakes and jets considered in our studies, it is well-known that there may be two
different types of neutral modes with critical layers centered on the inflection points, viz. the sinuous
and varicose modes. The plane (Bickley) jet, which has a sech2y velocity profile, has been used by
numerous authors to provide a good approximation to such a wake behind a bluff body. The Bickley
jet is somewhat special in that the varicose and sinuous modes have neutral wave numbers of 1 and
2, so that the former is the subharmonic of the latter. Several studies have explored the possibility
of an interaction between these two modes, and this sort of interaction is the focus of study in our
papers [22] and [23]. The reason interactions between the sinuous and varicose modes are considered
important is that they may give rise to extremely rapid nonlinear growth. Indeed, experimental
studies have demonstrated very rapid amplification of three-dimensional disturbances in plane wakes
(see, for example [24].)

In [22], we study the case of a three-dimensional disturbance with two pairs of oblique waves
superimposed on the Bickley jet at the same angle, ±θ: one pair varicose, and the other sinuous.
Based on the Euler equations for inviscid flows, a nonlinear critical layer analysis yields a set of
highly nonlinear coupled Hickernell-type integro-differential equations for the time-evolution of the
amplitudes of the disturbances. The evolution equations are solved numerically, and it is found that,
as with similar problems, the evolution of the disturbance goes through three stages: initially, the



disturbances grow linearly, until a second finite-amplitude nonlinear stage is reached, and eventually,
the oblique waves experience explosive growth. Indeed, the numerical solutions exhibit a finite-time
singularity. The origins of the singularity are not entirely clear, but it appears to be connected to
the breakdown of theory, and the onset of a new, still more nonlinear stage governed by the full
Euler equations. In [23], direct numerical simulation (DNS) using a standard spectral method for the
viscous equations at high Reynolds number provides confirmation of our results in [22].

5 Blood Flow in Compressed Vessels

The compression of blood vessels by surrounding tissue is an important problem in hemodynamics,
most prominently in studies relating to the heart. Problems related to blood flow in the cardiovascular
system are accompanied by a large array of difficulties which must be overcome to completely describe
the behavior of the fluid. On the other hand, many of these difficulties are not commonly encountered
in engineering applications. Among these factors are the pulsation of the flow, elastic walls, non-
Newtonian fluids, vessel tapering, wave reflections, and non-circular cross-sections. All of these factors
interact in the determination of flow characteristics in the blood vessel system. In order to obtain
quantitative results, however, it is necessary to adopt an idealization of the flow. This may involve
neglecting the effects of elasticity in the wall or assuming a high degree of symmetry of the tube. To
model the flow in a compressed vessel, in [25] we have approximated the membrane as a rigid elliptic
cylinder. Analytical expressions for the velocity field, flow rate and wall shear stress are derived for
the pulsating viscous flow. The shear stress imparted by the fluid on the walls of the membrane is
known to play a role in the growth of the membrane walls. In our studies, we have shown that in
a compressed regime (i.e. for large eccentricity of the elliptical walls), the shear stress may exhibit
some peculiar features. In particular, well-defined peaks in the shear stress on the tube wall migrate
away from their position on the minor axis of the ellipse, where they are located in steady flow.
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